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CHAPTER 4
Nonlinear Risks and the

Treatment of Bonds and Options

I n the previous chapter, we discussed risk measurement for single “well-
behaved” securities, with returns that can appropriately be mapped to

returns of one risk factor. In this basic case, the asset also has returns that
move linearly, that is, one-for-one or in a constant proportion to some
underlying asset or risk factor return. But many securities are not at all well-
behaved in this sense. Rather, they have nonlinear returns that have much
larger or smaller responses to some other asset returns, depending on the
asset price level.

Nonlinearity can vitiate risk measurement techniques such as VaR that
are designed primarily for linear exposures. In this chapter, we discuss non-
linearity, and how to measure risk in its presence. We’ll focus on two im-
portant examples of nonlinear securities, options and bonds. Another reality
that we will have to address is that many assets are complex, and are ex-
posed to multiple risk factors, and that most real-world portfolios contain
many positions and are exposed to multiple risk factors. In the next chap-
ter, studying risk measurement for portfolios, we focus on assets that are
sensitive to multiple risk factors.

Options and option-like exposures depart in both ways from the pre-
vious chapter’s model: nonlinearity and dependence on several risk factors.
First, the P&L of an option is a nonlinear function of returns on the un-
derlying asset. A relatively small return on the underlying asset can have a
large impact on option P&L. The P&L would therefore not be normally
distributed, even if risk factor changes were. Options are not unique in this
regard. Bond prices are also nonlinearly related to interest rates or yields.
Bond traders refer to this nonlinear sensitivity as convexity.

Second, option returns depend jointly on several market risk factors,
the underlying asset price, the financing or risk-free interest rate, and the
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underlying asset’s dividend, interest yield, or storage cost. There is also a
type of volatility risk that is peculiar to options and option-like securities.

Options are a species of derivatives. As noted in Chapter 1, derivatives
are securities with values that are functions of the values of other assets or
risk factors. But not all derivatives are nonlinear. There are two basic types
of derivatives: futures, forwards, and swaps on the one hand, and options
on the other.

Futures, forwards, and swaps have a linear and symmetric relationship
to the underlying asset price and can be hedged statically. Static
hedging means that the derivatives position can be hedged with a
one-time trade in the underlying asset. This does not mean their
values move one-for-one with those of the underlying, but rather
that their responsiveness to changes in the underlying is constant.

The possibility of static hedging means that only the value of
the underlying asset and not its volatility determines the value of
the derivative, so futures, forwards, and swaps generally have zero
net present value (NPV) at initiation. We note this here, since it is
a direct consequence of linearity; it becomes important when we
study counterparty credit exposure in Chapter 6.

Options have a nonlinear relationship to the underlying asset price and
must be hedged dynamically to minimize their risks. Dynamic hedg-
ing means that the amount of the underlying asset that neutralizes
changes in the derivative’s value itself changes over time, so repeated
trades are needed to stay hedged. For some values of the underly-
ing asset, the option value may move close to one-for-one with the
underlying, while for other values of the underlying it may hardly
change at all. In general, volatility is an important element in the
value of an option, so an option contract cannot have zero NPV at
initiation.

Nonlinearity is also important because it is one of two ways that the
P&L distribution can have fat tails, that is, a tendency toward very large
positive and/or negative values:

� The payoff function of the security may lead to disproportionately large-
magnitude returns for modest changes in the underlying asset price or
risk factor. For example, a given change in the value of the underlying
price may lead to a much larger or smaller change in the value of an
option at different levels of the underlying. Nonlinearity is the focus of
this chapter.

� The distribution of risk factor or asset price returns may be non-normal.
We discuss this possibility in more detail in Chapter 10.
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4.1 NONLINEAR RISK MEASUREMENT
AND OPTIONS

A number of approaches to modeling option risk have been developed. We’ll
focus on two relatively simple approaches. The first applies the simulation
techniques we developed in Chapter 3 in a way that takes account of the
special problems raised by the nonlinearity of options. The second, called
delta-gamma, uses a quadratic approximation to option returns. We’ll dis-
cuss these for plain-vanilla options, but they can be applied to exotic options,
convertible bonds, and other structured products. Both techniques can help
address the difficulties in accurately measuring risk generated by nonlinear-
ity, but neither completely solves them. After describing the delta-gamma
technique for options, we’ll show how it can be applied to fixed-income
securities.

This section assumes some, but not terribly much, familiarity with op-
tion pricing models, and readers can see the textbooks cited at the end of
the chapter to brush up. In this chapter, we simplify things by talking about
options in the context of the standard Black-Scholes-Merton pricing model.
We denote the Black-Scholes theoretical or model value of a plain-vanilla
European call option by v(St, T − t, X, σ, r, q) and that of a put option by
w(St, T − t, X, σ, r,q),

where St = is the time-t underlying price
σ = is the time-t asset return volatility
X = is the exercise price
T = is the maturity date, and τ = T − t the time to maturity
r = is the financing rate.
q = is the cash flow yield, such as a dividend or coupon, on

the underlying asset.

A European option is one that can only be exercised at maturity, in
contrast to an American option, which can be exercised anytime prior to
expiration. We define “one option” as an option on one unit—share, ounce,
or currency unit—of the underlying asset.

The formulas are spelled out in Appendix A.3. Option value depends
on its “design parameters,” the things that are part of the option contract:
whether it is a put or a call, its time to maturity, and the exercise price. It
also depends on market risk factors: the underlying asset price, the financing
or risk-free interest rate, the underlying asset’s cash-flow yield, and the
asset return volatility. The cash flow yield can be the interest paid by a
foreign-currency bank deposit, the coupon yield of a bond, a negative rate
representing the cost of storing oil or gold, or the dividend yield paid by
common stock.
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In the Black-Scholes model, we assume that interest rates and the cash
flow yield are constant and nonrandom. Most importantly, we assume that
the return volatility σ of the underlying asset is constant, nonrandom, and
that we have a reliable estimate of it, so the risk of the option is related only
to fluctuations in the underlying asset price. Let’s highlight two important
aspects of the constant-volatility assumption. First, in the last chapter, we
treated return volatility as a time-varying quantity, and sought to obtain an
accurate short-term forecast of its future value, conditional on recent return
behavior. Here, we treat volatility as constant. If this were only true, we
would, after a relatively short time interval, be able to estimate the volatility
with near-perfect accuracy. It would then matter little whether we treat σ as
a known or an estimated parameter.

Second, note that the volatility parameter is the only one that can’t be
observed directly. In many applications, we take σ to be the implied volatil-
ity, that is, an estimate of volatility that matches an observed option price
to the Black-Scholes formula, given the observed values of the remaining
arguments, St, τ , X, r , and q. But there are crucial gaps between the Black-
Scholes model and actual option price behavior. Implied volatility fluctuates
over time, and not only because the conditional volatility of the underlying
is time-varying. Market participants’ desire to buy and sell options fluctu-
ates, too, because of their changing appetite for risk in general, because their
hedging needs change over time, and because of their changing views on fu-
ture returns on the underlying asset, among other reasons. Implied volatility
risk, which we discuss in Chapters 5 and 10, is a key risk factor for option
positions.

Staying in the Black-Scholes world for now will help us discuss the risk
measurement issues arising from nonlinearity. The volatility σ is then both
the actual and implied volatility. For the rest of this chapter, the risk of the
option is understood to be driven by the risk of the underlying asset, that is,
changes in St, alone.

For concreteness, let’s look at a foreign-exchange option, specifically,
a European call on the euro, denominated in U.S. dollars, struck at-the-
money forward, with an initial maturity of one week. The long option
position is unhedged, or “naked.” The spot rate at initiation is $1.25 per
euro, the domestic (U.S.) one week money market rate (r ) is 1 percent, and
the euro deposit rate (q) is 28 basis points, both per annum. “At-the-money
forward” means that the strike price of the option is set equal to the cur-
rent one-week forward foreign exchange rate. This is a standard way of
setting option strikes in the OTC currency option markets. Given the do-
mestic and foreign deposit rates, the one-week forward rate, the exercise
price of the option, is slightly higher than the spot rate; the euro trades at
a small premium of about two ticks, that is, the forward rate “predicts”
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a slight dollar depreciation to $1.2502 over the subsequent week. This is
consistent with covered interest rate parity and the absence of forward ar-
bitrage, since the domestic interest rate is slightly higher than the foreign
one. We assume finally, that the actual and implied volatility σ is 12 percent
per annum.

In the Black-Scholes model, logarithmic exchange rate returns follow
the probability distribution:1

log(St+τ ) ∼ N
[
log(St) +

(
r − q − σ 2

2

)
τ, σ

√
τ

]

This distributional hypothesis is consistent with the parametric VaR exam-
ples of Chapter 3. The mean of the time-T = t + τ spot rate is equal to the
forward rate, and its standard deviation is equal to the constant volatility,
adjusted for the time horizon t + τ . Just as in Chapter 3, we have set the
parameters in our example so that the drift over discrete time periods is
equal to zero:

r − q = σ 2

2
= 0.0072

In the case of forward foreign exchange, under covered interest parity,
the drift is equal to the spread between the two interest or deposit rates
involved, minus the volatility adjustment. In our example, we’ve set the
spread so as to zero out the drift. The value of a one-week European call
is then $0.00838, or a bit more than 8

10 of a U.S. cent for each euro of
underlying notional amount.

4.1.1 Nonl inearity and VaR

Now that we’ve set up the model and the example, let’s start by imagining
the simplest possible way to compute a one-day VaR for the one-week
European call on the euro. The upper panel of Figure 4.1 shows the P&L of
a long position in one euro call after one day as a function of the underlying
exchange rate, including one day of time decay, the perfectly predictable
change in value of the option as its remaining maturity is shortened by
the passing of time. The 1 and 99 percent quantiles of the one-day ahead
exchange rate, given the posited probability distribution, are marked in the
graph with vertical grid lines. The points at which those grid lines intersect
the P&L plot mark the 1 and 99 percent quantiles of the next-day P&L.

1See Appendix A.3 for more detail on this distribution and its relationship to the
Black-Scholes model.
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F IGURE 4.1 Monotonicity and Option Risk Measurement
One-day P&L in dollars of an at-the-money forward call on the euro,
denominated in U.S. dollars, as a function of the next-day USD-EUR exchange
rate. The option parameters and the spot rate’s probability distribution are as
described in the text. Vertical grid lines denote the 1st and 99-th percentiles of
the exchange rate.
Upper panel: One-day P&L of a position in one euro call as a function of the
underlying exchange rate.
Lower panel: One-day P&L of a position in one euro call, delta-hedged at the
beginning of the period, as a function of the underlying exchange rate.

If the value of a position is a nonlinear function of a single risk factor,
and we know or stipulate its P&L distribution, it looks fairly straightforward
to compute any of its P&L quantiles, including the VaR, directly from the
P&L distribution. The 99 percent VaR of the call position in our example
is equal to about $0.0065.
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Let’s try to generalize this approach, which we’ll refer to as “analytical,”
to other types of option positions. We denote the pricing or value function
of the position or security by f (St, τ ), where St is the sole risk factor. For
the specific case of a European option, we set f (St, τ ) = v(St, τ, X, σ, r, q) or
f (St, τ ) = w(St, τ, X, σ, r, q), since σ is a parameter for now, and St the only
random driver of value. The number of options in the position is denoted x,
so the time-t value of the portfolio is Vt = xf (St, τ ), and the random P&L
over the VaR time horizon θ is

Vt+θ − Vt = x [ f (St+θ , τ − θ) − f (St, τ )]

The function arguments in the first term inside the square brackets reflect
the fact that the VaR will be determined by the exchange rate one day ahead,
and its impact on the value of an option with a maturity that is now one day
shorter. We would like to be able to calculate, say, the one day, 99 percent
VaR, by setting it equal to

f (S∗, τ − θ) − f (St, τ )

per option, where S∗ is the, say, 1st or 99-th percentile of St, depending on
whether the position is long or short. The VaR shock, the asset return at
which the VaR is just reached, is then

r∗ = log
(

S∗

St

)
⇔ S∗ = Ster∗

But this only works if the position value or P&L is a monotonic or
monotone function of the underlying risk factor. The function f (St, τ ) is
called monotone increasing in St if and only if

S1 > S2 ⇔ f (S1, τ ) > f (S2, τ ) ∀S1, S2

A function f (St, τ ) is called monotone decreasing in St if and only if

S1 > S2 ⇔ f (S1, τ ) < f (S2, τ ) ∀S1, S2

Plain-vanilla options fulfill this requirement. The long call shown in
the upper panel of Figure 4.1, for example, is monotone increasing; its
slope or “delta” (to be defined in a moment) is never negative. A put is a
nonincreasing function; its delta is never positive.

The lower panel of Figure 4.1 illustrates a case in which this “analytical”
method of VaR calculation won’t work, because the portfolio value is not
a monotone function of the underlying asset price. It displays the next-day
P&L on a delta-hedged position in the call. Here, the first percentile of
the exchange rate doesn’t tell us the VaR, because there is another, higher,
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exchange rate realization, close to the 99th percentile, that has exactly the
same P&L.

The lower panel suggests that the VaR shock is zero or just a small
fluctuation away from the initial exchange rate. The delta-hedged call is a
“long volatility” or “long gamma” trade, and is most profitable if there are
large exchange-rate fluctuations in either direction.

So there is a crucial additional requirement, monotonicity, if we are
to take the simple “analytical” approach to risk measurement for an op-
tion position. Monotonicity also enters into the standard theory behind the
distribution of a transformation of a random variable with a known distri-
bution. This standard theory, discussed in Appendix A.5, requires that the
inverse function of the transformation exist, and only monotone functions
are “one-to-one” and thus invertible. Monotonicity is thus a requirement
for being able to “pass through” the probability distribution of St to the
probability distribution of Vt − Vt+τ .

4.1.2 Simulat ion for Nonl inear Exposures

Since we can’t assume the P&L is a monotonic function of the underlying
asset, the “analytical” approach doesn’t work in general. In the example
above, monotonicity didn’t hold even for a position exposed to a single risk
factor. Very few portfolios are that simple, and the invertibility condition is
very hard to meet in practice. An approach that uses the same model for the
underlying return behavior, but doesn’t fail in the face of nonmonotonicity,
is Monte Carlo or historical simulation with full repricing. This procedure
is similar to that laid out in Chapter 3. But we have here the additional step
of computing the P&L via f (St, τ ) in each simulation thread, rather than
simply ascertaining the value of St in each simulation thread.

The first two steps of either of these simulation approaches are to prepare
the simulated returns. These are identical to the first two steps of the Monte
Carlo and historical simulation techniques as laid out for linear positions in
Chapter 3. The difference for nonlinear positions is in how the simulated
returns are treated next, in the “repricing” step. Instead of multiplying the
position value by the simulated returns, we enter the simulated return into
the pricing or value function f (St, τ ).

For the Monte Carlo simulation technique, and still assuming the normal
distribution, the simulated exchange rates are

S̃(i) = St exp
(
σ
√

τ ε̃(i)) i = 1, . . . , I

where ε̃(i), i = 1, . . . , I are a set of independent draws from a N(0, 1)
distribution. We set the VaR time horizon θ = 1

252 and I = 10,000 in our
examples.
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The 99 percent VaR is found by substituting the S̃(1), . . . , S̃(I) into the
P&L function x [ f (St+θ , τ − θ ) − f (St, τ )] to get

x
[

f (S̃(i), τ − θ ) − f (St, τ )
]

i = 1, . . . , I

and taking the 1st percentile, or 10th worst outcome. The result in our
example is a VaR estimate of $0.0065, or about 65

100 of one cent per euro
of underlying notional, and about the same as that obtained with the “an-
alytical” approach. The result is not identical to that of the “analytical”
approach because of simulation noise: the distribution of the S̃(i) is only
approximately equal to that of St.

Monte Carlo with full repricing is often impractical for computing risk
for large portfolios. It can be slow if there are many positions, and if enough
of those positions are priced via complicated models, though this is becom-
ing less of a problem as computing power increases. Many derivative and
structured credit pricing models are implemented via simulation rather than
analytical solution. That means that if we want to know what the security
is worth for a given value of the underlying asset or other market inputs,
we don’t plug the S̃(i) into a formula, but rather simulate the security value
using the inputs as parameters. We give a detailed example of such a proce-
dure in Chapter 9. In many cases, each simulation of a security value can be
quite “expensive” in computer time. In order to do risk computations with
I = 10,000 for such an asset, we must repeat this pricing process 10,000
times. If each repricing requires, say, 1,000 simulations to be accurate, a
total of 10,000,000 simulation threads have to be computed. Even a great
deal of sheer computing power may not speed it up enough to be practicable.

But if we stipulate the distribution of the underlying returns, Monte
Carlo can be made as accurate as we like, as long we use as much computing
time and as many simulations as are needed for that level of accuracy and
the pricing model we are using. It therefore serves as the typical benchmark
for assessing the accuracy of other approaches, such as delta-gamma, which
we discuss next. Of course, to use Monte Carlo as a benchmark, you have
to run it, at least in studies, if not in practice.

4.1.3 Delta-Gamma for Opt ions

So far, we have developed a simple approach that fails in the absence of
monotonicity, and a simulation approach that is too slow to be practicable
in general. The next approach we will explore, delta-gamma, does not help
at all with the monotonicity problem, but it can speed up calculations com-
pared to full repricing. It raises new statistical issues, and, more importantly,
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it is based on an approximation that hedging can be wildly wrong. But when
delta-gamma is safe to use, it can be very useful.

The starting point for the delta-gamma approach is to approximate
the exposure of a call to fluctuations in the underlying asset price, using a
quadratic approximation in St, by

�v(St, τ, X, σ, r, q) = v(St + �S, τ − �t, X, σ, r, q)

− v(St, τ, X, σ, r, q)

≈ θc,t�t + δc,t�S + 1
2

γt�S2

(4.1)

The theta of the call option is

θc,t ≡ ∂

∂t
v(St, τ, X, σ, r, q)

The theta of a long position in a put or call option is negative, and represents
the predictable loss of option value as its maturity shortens.

The delta of the option, the slope of the option pricing function we
referred to above, is

δc,t ≡ ∂

∂St
v(St, τ, X, σ, r, q)

The delta is also the amount of the underlying asset that must be bought or
sold to hedge the option against small fluctuations in the underlying price.
Corresponding definitions can be provided for a put. The gamma is

γt ≡ ∂2

∂St
2 v(St, τ, X, σ, r, q)

and is the same for both a call and put with the same strike and maturity. The
delta and gamma change with the underlying price, the implied volatility,
and the other market and design parameters of the options, but we are not
spelling out this dependency in the notation, except to put a time subscript
on the sensitivities.

We have two ways now to use the quadratic approximation to compute
the one day, 99 percent VaR:

� “Analytical,” that is, find the quantile of the future exchange rate corre-
sponding to the 0.01 quantile of the P&L function, and substitute it into
the delta-gamma approximation to the P&L function. This approach
will not solve the monotonicity problem, but it is fast.
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� Simulation, that is, use the same simulated values of the future exchange
rate as in full repricing, but use the delta-gamma approximation to
compute each simulation thread’s P&L. The first percentile (times −1)
is the VaR. This approach will solve the monotonicity problem, and it
is much faster than full repricing. But it can be inaccurate, as we will
see in a moment.

We can also compare the quadratic to a linear approximation using
delta alone:

�v(St, τ, X, σ, r, q) ≈ θc,t�t + δc,t�S

As we will see, there are tricky issues in choosing between a linear and
higher-order approximation.

Let’s look at examples that cover a range of option position types fre-
quently encountered in practice. For each one, we’ll graph the P&L function
itself as a solid curve, and the delta (linear) and delta-gamma (quadratic)
approximations to the P&L function. For each option prtfolio, we will also
display the histogram of simulated P&Ls using the P&L function itself and
the delta-gamma approximation. The one-day, 99 percent confidence level
VaR results are summarized in Table 4.1 for the three option position types
and the three approaches to VaR estimation.

Unhedged Long Cal l The upper panel of Figure 4.2 illustrates the delta-
gamma approximation for an unhedged, or “naked,” long call. The solid
plot shows the one-day change in value of the one week euro call of our
standing example as the spot exchange rate varies.

The analytical approach can be used, since the payoff profile is mono-
tonic. The analytical as well as the simulation approaches using the delta-
gamma approximation or full repricing all give roughly equal VaR estimates
of about $0.0073. Any of these are much more accurate than the delta ap-
proximation, which substantially overestimates the VaR.

TABLE 4.1 Comparison of Option VaR Estimates

Analytical Delta Delta-Gamma Full Repricing

Long call 0.00731 0.01178 0.00736 0.00726
Delta-hedged long call NA 0.00092 0.00092 0.00092
Risk reversal 0.01178 0.01073 0.00410 0.01152
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F IGURE 4.2 Delta-Gamma and Full-Repricing VaR for an Unhedged Long Call
Upper panel: One-day P&L in dollars of a long call option position as a function
of the next-day USD-EUR exchange rate. The solid curve plots the exact P&L
function, the dashed curve the delta approximation, and the dot-dashed curve the
delta-gamma approximation.
Lower panel: Histogram of simulated P&Ls using the exact P&L function
(unshaded bars), and the delta-gamma approximation (shaded bars).

Hedged Long Cal l For a hedged long call, we can’t use the analytical ap-
proach at all, since the P&L function is notmonotone. The hedged call has a
delta of zero when the hedge is first put on, so the quadratic approximation
becomes

�v(St, T − t, X, σ, r, q) ≈ θc,t�t + 1
2

γt�S2
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As can be seen from Figure 4.3, the worst losses on this long gamma
strategy—a strategy for which the position gamma is positive—occur when
the exchange rate doesn’t move at all. A short gamma position has its worst
losses when there is a large exchange-rate move. This is an important point:
A delta-hedged option position still has a potentially large gamma exposure
to the underlying price, since it cannot be hedged continuously in time.
Rather, the hedge is rebalanced at discrete intervals.

At the 1st and 99th percentiles of the exchange rate’s next-day distribu-
tion, the P&L of the long gamma trade is positive. The nonrandom one day
time decay of $0.00092 is the largest possible loss, and is offset to a greater
or lesser extent by gamma gains from any exchange rate fluctuations. About
two-thirds of the simulation scenarios are losses, but within the narrow
range (−0.00092, 0).

All three simulation approaches give almost exactly the same result.
The reason is that a small loss, very close to the time decay of the option,
is the likeliest outcome. Under the normal distribution, most fluctuations
are small, and the gamma is therefore a very small positive number. So the
lower quantiles of the P&L distribution are equal to the time decay, minus
a tiny gamma gain.

Opt ion Combinat ions Before describing the next option position, involving
several options, we need to introduce some terminology. An option combi-
nation is a portfolio of options containing both calls and puts. An option
spread is a portfolio containing only calls or only puts. A combination or a
spread may contain either short or long option positions, or both.

One of the most common option combinations is the straddle, consisting
of a call and a put, both either long or short, both struck at-the-money spot
or forward, and both with the same maturity. In the options on futures
markets, the exercise price is generally chosen to be close to the price of the
current futures with the same expiration date as the options.

Almost as common are combinations of out-of-the-money options, par-
ticularly the strangle and the risk reversal. Both consist of an out-of-the-
money call and out-of-the-money put. In these two combinations, the exer-
cise price of the call component is higher than the current spot or forward
asset price (or futures), and the exercise price of the put is lower. In a risk
reversal, an out-of-the-money call is exchanged for an out-of-the-money put,
with a net premium paid by one to the other counterparty. In a strangle,
one counterparty sells both an out-of-the-money call and an out-of-the-
money put to the other. Figure 4.4 displays the payoff profiles of these
combinations.

In the OTC foreign exchange option markets, risk reversals and strangles
are usually standardized as combinations of a 25-delta call and a 25-delta
put (or 10-delta). The exercise prices of the call and put are both set so
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F IGURE 4.3 Delta-Gamma and Full-Repricing VaR for a Hedged Call
Upper panel: One-day P&L in dollars of a delta-hedged long call option position
as a function of the next-day USD-EUR exchange rate. The solid curve plots the
exact P&L function, the dashed curve the delta approximation, and the
dot-dashed curve the delta-gamma approximation.
Lower panel: Histogram of simulated P&Ls using the exact P&L function
(unshaded bars), and the delta-gamma approximation (shaded bars).

that their forward deltas are equal to 0.25 or 0.10. We describe the quoting
conventions of these instruments in more detail in Section 5.5.

Risk reversals provide a good illustration of the relationship between
nonlinearity in the pricing function and the pitfalls of relying on linear
or quadratic approximations to the pricing function to measure risk. The
risk reversal’s P&L function is monotone, but alternates between concave
and convex segments. This renders the delta-gamma approach much less
accurate; in fact, it is significantly worse than using delta alone, as can be seen
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F IGURE 4.4 Option Combinations
Each panel shows the intrinsic and current values of an option combination. The
current price of the underlying asset is 100, the annual implied volatility is 20 percent,
the time to maturity of all the options is 1 month, and the risk-free rate and dividend
rate on the underlying asset are both set at 1 percent. The forward asset price is
therefore also 100. In each panel, the solid line represents the intrinsic and the
dashed line the current value of the combination as a function of the terminal or
current price of the underlying. The vertical grid lines mark the 1 and 99 percent
quantiles of the risk-neutral distribution of the underlying asset.
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in Figure 4.5. Surprisingly, using the “less accurate” linear approximation
is in fact less misleading than using the quadratic approximation, which
underestimates the VaR by over one-half.

The risk reversal is similar to a delta-hedged option in that it has an
initial net delta that is close to zero. Its initial gamma is much lower, though,
since there are two offsetting options; the long option position has positive
and the short option has negative gamma. Moreover, each of the component
options has a lower-magnitude gamma at the initial exchange rate than an
at-the-money option with the same maturity.

An alternative approach to VaR measurement would be to compute
the variance of the change in value of the option �v(St, T − t, X, σ, r, q). In
other words, we would treat the option value itself, rather than the under-
lying asset price, as the risk factor. But this involves an additional statistical
issue. The quadratic approximation gives us �v(St, T − t, X, σ, r, q) as a
function of the change in the value of the underlying asset and the squared
change. To compute its variance, we would have to take into account the
joint distribution of a normal variate, and its square. Other analytical ap-
proximations to delta-gamma have also been proposed, but none appear to
be decisively superior in accuracy over a wide range of position types and
asset classes.

4.1.4 The Delta-Gamma Approach for General
Exposures

The delta-gamma approach can be applied to any security with payoffs
that are nonlinear in a risk factor. For simplicity, let’s continue to look at
securities that are functions f (St, τ ) of a single risk factor St and time. Just
as we did for an option in Equation (4.1), we can approximate changes in
value by the second-order Taylor approximation:

� f (St, τ ) = f (St + �S, τ − �t) − f (St, τ ) ≈ θt�t + δt�S + 1
2

γt�S2

The theta of the security is the perfectly predictable return per time
period:

θt ≡ ∂ f (St, τ )
∂τ

For a bond or a dividend-paying stock, for example, the theta is the coupon
or other cash flow, and is a positive number.
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F IGURE 4.5 Delta-Gamma and Full-Repricing VaR for a Risk Reversal
Upper panel: One-day P&L in dollars of a risk reversal position as a function of
the next-day USD-EUR exchange rate. The solid curve plots the exact P&L
function, the dashed curve the delta approximation, and the short-long dashed
curve the delta-gamma approximation.
Lower panel: Histogram of simulated P&Ls using the exact P&L function
(unshaded bars), and the delta-gamma approximation (shaded bars).

The delta of any security, just as for an option, is the first derivative of
the value f (St, τ ) per unit or per share with respect to the risk factor St:

δt ≡ ∂ f (St, τ )
∂St
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The gamma of the security is

γt ≡ ∂2 f (St, τ )

∂St
2

As with options, in order to apply the delta-gamma approach without
being misleading, the function f (St, τ ) must be monotonic in St, that is, its
first derivative does not change sign, no matter how high or low the value of
the risk factor St. We assume that the risk factor St is lognormally distributed
with zero mean. Recall that the parametric VaR for a long position in a single
security is estimated as

VaRt(α, τ )(x) = −
(
ez∗σ

√
τ − 1

)
xSt

We now have to be careful with determining z∗, the standard normal
ordinate corresponding to the VaR shock. If the delta is negative, then z∗
is in the right rather than the left tail of the normal distribution. The most
important example is VaR of a bond when we map bond prices to interest
rates. We study this approach to bond VaR estimation in the rest of this
chapter.

Under the delta-gamma approach, VaR is estimated as

VaRt(α, τ )(x) = −x
{(

ez∗σ
√

τ − 1
)

Stδt + 1
2

[(
ez∗σ

√
τ − 1

)
S2

t

]2
γt

}

where z∗ is the ordinate of the standard normal distribution for

{
α

1 − α

}
for δt

{
< 0
> 0

}

and α is the VaR confidence level. If δt > 0, as in the examples up until
now, then z∗ is a negative number such as −2.33, and ez∗σ

√
τ − 1 < 0. If

δt < 0, as in the example we develop in the next section, then z∗ is a positive
number such as +2.33, and ez∗σ

√
τ − 1 > 0. Either way, the VaR estimate is

a positive number.

4.2 YIELD CURVE RISK

This chapter on nonlinear risks may seem an odd place to discuss yield
curve risk. The reason we do so is that, while bonds have a price expressed
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in currency units, they are more frequently viewed as exposures to interest
rate rather than bond price fluctuations. Interest rate exposure is nonlinear,
though much less drastically so than for options and other derivatives.

We start by focusing on default-free bonds, that is, bonds with determin-
istic future cash flows; their size and timing are known with certainty. The
only thing that is risky about them is the discounted value the market will
place on a dollar of cash flow delivered in the future. In subsequent chapters,
we introduce credit spreads and discuss the risks of defaultable bonds when
both risk-free and credit-risky interest rates can fluctuate. In practice, of
course, as we noted in Chapter 2, no security is perfectly free of default risk.

Bond and other fixed-income security values are generally expressed
for trading purposes as either a dollar/currency unit price, as a yield, or
as a spread. However, none of these price metrics completely describe the
yield curve the bond value depends on. Bond prices are not appropriate risk
factors because

� Bonds vary in maturity. Ceteris paribus, longer-maturity bonds have
a greater volatility than shorter-maturity bonds. In fact, as bonds near
their maturity date, the volatility declines to zero, a phenomenon known
as pull-to-par. So the risk of a bond changes merely because of the
passing of time.

� Interest rates vary by the term over which the use of money is granted.
Bond prices are determined, not by one interest rate, but by the yield
curve, that is, interest rates of many different maturities. Interest rates
are more truly the underlying risk factor than bond prices themselves. By
focusing on the yield curve, we capture the differences in the sensitivity
of a bond’s value to changes in interest rates with different terms to
maturity.

There are three common approaches to computing the VaR of a bond:

1. Cash-flow mapping. The value of any default-free bond can be de-
composed into a set of zero-coupon bonds corresponding to each of
the cash-flows associated with it. The prices of zero-coupon bonds
can be used as risk factors. This approach can involve a large num-
ber of zero-coupon bonds if there are many cash flows and/or the
bond has a long term to maturity. In such cases, we can bucket the
cash flows into a smaller number of zero-coupon nodes or vertexes.

2. Duration of a bond can be measured and used together with the
yield history of bonds of that maturity to derive an estimate of the
bond’s return volatility.



P1: a/b P2: c/d QC: e/f T1: g

JWBT440-c04 JWBT440-Malz August 17, 2011 16:47 Printer: To Come

138 FINANCIAL RISK MANAGEMENT

3. Factor models for bonds are focused on parsimonious sets of drivers
of interest-rate risk. These can be interpreted statistically, for ex-
ample, as principal components of interest rates, or economically,
related to changes in the level, slope, and curvature of the yield
curve.

The rest of this chapter introduces basic yield-curve concepts and focuses
on the duration approach to measuring the interest-rate risk of a bond. Bonds
denominated in a currency other than that of the portfolio owner’s domicile
have currency risk in addition to that generated by fluctuating interest rates.

4.2.1 The Term Structure of Interest Rates

This section gives a brief overview of yield curve concepts. The term structure
can be described in three ways which have equivalent information content,
the spot and forward curves and the discount function.

Any interest rate, including a spot rate, can be expressed numerically
using any compounding interval, that is, the period during which interest
accrues before interest-on-interest is applied. Interest rates with any com-
pounding interval can be easily transformed into rates with any other com-
pounding interval. Therefore, the choice of compounding interval is purely
a choice of units, and is made for convenience only. We’ll focus on continu-
ously compounded rates, that is, interest rates expressed as though they were
paid as a continuous flow, equal in every instant to the same fraction of the
principal. The mathematics of the yield curve are simplest when expressed
in continuously compounded terms, but real-world interest rates are rarely
set this way. Interest rates are expressed as a rate per unit of time. We will
express all interest rates at annual rates unless otherwise indicated.

We start with the notion of a zero-coupon or discount bond, a bond
with only one payment, at maturity. We denote the time-t price per dollar
of principal amount (also called par or notional amount or face value) of
a discount bond maturing at time T by pτ , where τ ≡ T − t is the time to
maturity (a time interval rather than a date). The price at maturity of a
risk-free discount bond is p0 ≡ 1.

Spot and Forward Rates The spot rate rτ is the continuously compounded
annual rate of interest paid by a discount bond, that is, the rate of inter-
est paid for the commitment of funds from the current date t until the
maturity date T. The continuously compounded spot rate is the interest
rate paid from time t to time T. The continuously compounded spot or
zero-coupon curve is the function rτ relating continuously compounded
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spot rates to the time to maturity or maturity date. This function changes as
interest rates fluctuate. But for the rest of this section, we’ll omit the “as-of”
date subscript and keep only the time-to-maturity subscript, since our focus
for now is on the properties of the yield curve at a point in time, rather than
on its evolution over time.

The relationship between pτ and rτ is given by

pτ erτ τ = 1
⇒ ln(pτ ) + rτ τ = 0

⇒ rτ = − ln(pτ )
τ

(4.2)

that is, rτ is the constant annual exponential rate at which the bond’s value
must grow to reach $1 at time T.

Example 4.1 Let the price of a discount bond expiring in nine months be
p3

4
= 0.96. The continuously compounded nine-month spot rate is

r 3
4

= −
ln

(
p3

4

)
3
4

= 0.054429

or 5.44 percent. In this, as in our other examples, we ignore the refinements
of day-count conventions, which dictate how to treat such matters as varia-
tions in the number of days in a month or year, and the fact that the number
of days in a year is not an integer multiple of 12.

A forward rate is the rate of interest paid for the commitment of funds
from one future date T1, called the settlement date, until a second future
date T2, called the maturity date, with t ≤ T1 < T2. We now have two time
intervals at work: the time to settlement τ1 = T1 − t and the time to maturity
τ2 = T2 − T1. (Note that T2 = t + τ1 + τ2.)

The continuously compounded forward rate from time T1 to time T2,
denoted fτ1,τ1+τ2 , is the continuously compounded annual interest rate con-
tracted at time t to be paid from time T1 to time T2. The continuously
compounded τ2-period forward curve is the function fτ1,τ1+τ2 relating for-
ward rates of a given time to maturity to the time to settlement or the
settlement date. An example of a forward curve is the curve of three-month
U.S. dollar money market rates implied by the prices of Chicago Mer-
cantile Exchange (CME) Eurodollar futures contracts, for which we have
τ2 = 1

4 .
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We can relate continuously compounded forward rates to discount bond
prices and spot rates. The forward rate is defined by

1
pτ1

pτ1+τ2e
fτ1 ,τ1+τ2 τ2 = 1

⇒ ln
(

pτ1+τ2
pτ1

)
+ fτ1,τ1+τ2τ2 = 0 (4.3)

⇒ fτ1,τ1+τ2 = − 1
τ2

ln
[

pτ1+τ2
pτ1

]
= 1

τ2
ln

[
pτ1

pτ1+τ2

]

The first line of Equation (4.3) defines the forward rate as the constant rate
at which the price of a bond maturing on the forward maturity date must
grow so as to equal the price of a bond maturing on the forward settlement
date. From the last line of Equation (4.3), together with the last line of (4.2),
we see that forward rates can also be calculated directly from spot rates:

fτ1,τ1+τ2 = rτ1+τ2 (τ1 + τ2) − rτ1τ1

τ2

The instantaneous forward rate with settlement date T, denoted fτ , is
the limit, as T1 → T2, of fτ1,τ1+τ2 :

fτ = lim
τ2→0

fτ1,τ1+τ2 = lim
τ2→0

rτ2 (τ1 + τ2) − rτ1τ1

τ2
= rτ + drτ

dτ
τ

after simplifying notation by setting τ ≡ τ1. The instantaneous forward rate
is the interest rate contracted at time t on an infinitely short forward loan
settling τ periods hence. For concreteness, one can think of it as a forward on
the overnight rate prevailing at time T. The instantaneous forward curve is
the function fτ relating instantaneous forward rates to the time to settlement
or the settlement date.

A forward rate with a finite time to maturity can be viewed as the average
of the instantaneous forward rates over the time to maturity. Integrating over
a range of settlement dates, we have

fτ1,τ1+τ2 = 1
τ2

∫ τ1+τ2

τ1

fsds

A τ -year continuously compounded spot rate, that is, the constant an-
nual rate at which a pure discount bond’s value must grow to reach one
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currency unit at time T, can be expressed by integrating the instantaneous
forward curve over the time to maturity:

rT = 1
T

∫ T

0
ftdt

The relationship between spot and forward rates has an important implica-
tion: the forward curve is higher than the spot curve for maturity intervals
in which the spot curve is upward sloping, and vice versa.

Spot curves and forward curves are two equivalent ways of expressing
the term structure of interest rates as a function of the time to maturity.
A third is the discount function or discount factor curve, which relates the
prices of zero-coupon bonds to their times to maturity. Unlike either spot
curves or forward curves, the discount function has no compounding inter-
vals. As we saw in defining them, forward rates can be viewed as logarithmic
changes along the discount function. Discount factors are very close to 1 for
short maturities, and close to 0 for long maturities. The discount function
must slope downwards.

4.2.2 Est imat ing Yie ld Curves

None of the yield curve concepts we’ve just defined are, in general, directly
observable. This is a pity, because modeling and implementing risk measures
for fixed-income securities requires them. Apart from a small number of
short-term bonds such as U.S. Treasury bills and strips, there are not many
zero-coupon bonds. And while many bond prices are expressed in yield
terms, money-market instruments are among the only single cash-flow secu-
rities that would permit one to easily convert the yield into a continuously
compounded spot rate. Forward rates are expressed in money market futures
and forward rate agreements, the OTC analogue of money market futures.

In other words, yield curves have to be extracted or estimated from the
actually traded mishmash of diverse fixed-income security types. Aside from
the diversity of cash flow structures and quoting conventions, there are other
problems with the market data used in estimating yield curves, for example,

Liquidity. Different securities on what seems to be the same yield curve
can have very different liquidity, so that effectively, their prices
are generated by different yield curves. For example, on-the-run
or freshly issued U.S. Treasury notes have lower yields and higher
prices than off-the-run notes, that is, issues from less recent auctions,
which tend to have lower prices and a liquidity premium.

Embedded options. Some bonds are callable or have other option-like
features. In fact, some U.S. Treasury notes issued prior to 1985 were
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callable. These options can have value, and if they do, their prices
do not coincide with the discount factors for similar bonds without
options.

Taxes. Different types of bonds have different tax treatment. For ex-
ample, in the United States, income from U.S. Treasury issues is not
taxed at the state and local level, and the income from most bonds
issued by state and local governments is not taxed at all, while in-
come from corporate bonds is taxable at the federal, state, and local
level. These tax differences have a large impact on prices that has
to be taken into account in estimating yield curves.

To get around these problems, one can filter the data so that they are
uniform with respect to their tax, liquidity, and optionality characteristics.
Alternatively, one can estimate the impact of these characteristics and adjust
the data for them.

Another set of issues making it difficult it construct yield curves is that
the estimated yield curves can behave strangely in several ways:

Asymptotic behavior. If we extrapolate yield curves to much longer
maturities than the data provide, in itself a problematic exercise,
the prices or spot rates may become negative or infinite.

Violations of no-arbitrage conditions. Estimated yield curves may dis-
play discontinuities, spikes, and other oddities. Intermediate points
on the spot and forward curves falling between actual observations
may then be much higher or lower than neighboring points. Lack
of smoothness may lead to the apparent possibility of instantaneous
arbitrage between bonds or forward contracts with different matu-
rities as computed from the curve.

The discount, spot, and forward curves are different ways of expressing
the same time value of money, so any of these forms of the yield curve can
be estimated and transformed into any of the others, with the form chosen
for a particular purpose a matter of convenience or convention.

Bootstrapping and Spl ines A common approach “connects the dots” be-
tween observed yields, spot rates, or forward rates:

Bootstrapping. Each security is stripped down to its individual cash
flows, which are arranged in maturity order. Starting with the
shortest maturity, and using the results of each step to support the
subsequent step, the discount factors or spot rates corresponding to
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each maturity are computed. Futures and forwards as well as cash
securities can be included.

Spline interpolation is a process for connecting data points by passing
polynomial functions through them. Polynomials have the advan-
tage that, depending on their degree, they lead to smooth curves in
the sense that they have finite derivatives. For example, cubic splines
have finite first, second, and third derivatives.

The bootstrapping and spline approaches have the advantage that the
price or yield of each of the securities used to estimate the yield curve
can be recovered exactly from the estimated curve. But both approaches
tend to produce curves that are spiky or excessively wavy, or extrapolate
out to infinity or zero. In practice, these problems can be addressed by
preprocessing the data or by additional smoothing techniques.

Parametric Est imates Parametric approaches begin with a model that
limits the forms the yield curve can take. For example, the Nelson-Siegel
specification of the instantaneous forward rate is similar in spirit to a delta-
gamma approach and is given by

f (τ ; β0, β1, β2, θ) = β0 + β1e− τ
θ + β2

τ

θ
e− τ

θ (4.4)

where (β0, β1, β2, θ ) is a vector of parameters to be estimated and τ , rep-
resenting the time to maturity, is the single argument of the function. The
corresponding representation of the spot rate is the definite integral of this
instantaneous forward rate over τ , Equation (4.4) or

r (τ ; β0, β1, β2, θ ) = β0 + (β1 + β2)
(

τ
θ

)−1 (
1 − e− τ

θ

) − β2e− τ
θ

= β0 + β1
(

τ
θ

)−1 (
1 − e− τ

θ

)
+β2

[(
τ
θ

)−1 (
1 − e− τ

θ

) − e− τ
θ

]

With different values of the parameters, the function is capable of fitting
a wide range of typical yield curve shapes. Each term and parameter in the
function contributes a distinct element to these typical patterns:

� β0 is the asymptotic value of the forward rate function and represents
the forward rate or futures price prevailing at very long maturities.

� As τ ↓ 0, the forward and spot rates tend toward β0 + β1, which
thus more or less represents the overnight rate. To constrain the very
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short-term interest rate to nonnegative values, the condition β1 > −β0 is
imposed. If β1 > 0 (< 0), the very short-term value of the function is
higher (lower) than the long-term value.

� The term β1e− τ
θ imposes exponential convergence to the long-term value

β0. If β1 > 0 (< 0), the convergence is from above (below).
� The term β2

τ
θ
e− τ

θ permits hump-shaped behavior of the yield curve. If
β2 > 0 (< 0), the function rises above (falls below) its long-term value
before converging.

� The speed of convergence of both the simple and humped exponential
terms to the long-term value is governed by θ . A higher value of θ

corresponds to slower convergence. That is, for a given gap between
very short- and long-term rates, a higher value of θ lowers any other
term spread.

We use the Nelson-Siegel specification in the examples in the rest of this
chapter. The reason is that the parameters have a nice interpretation as three
yield curve risk factors:

1. β0 is the yield curve level factor and has a constant factor loading of
unity.

2. β1 is the yield curve curvature factor. It has a factor loading of(
τ
θ

)−1 (
1 − e− τ

θ

)
.

3. β2 is a factor representing an “overshoot-and-converge” pattern in the
yield curve level, and has a factor loading of

(
τ
θ

)−1 (
1 − e− τ

θ

) − e− τ
θ .

In particular, by changing β0, we can induce parallel shifts up or down
in the yield curve in a simple way. We use this property in the rest of
this chapter. The Nelson-Siegel is used more in academic work than in the
practical work of financial intermediaries, since it doesn’t exactly replicate
the input security prices. But it is a very practical tool for explicating risk
measurement techniques for fixed income.

Figure 4.6 illustrates the Nelson-Siegel function. It is estimated using
unweighted least squares and data on Libor, eurodollar futures, and plain-
vanilla swap rates on Nov. 3, 2007.

4.2.3 Coupon Bonds

A coupon bond is an interest-bearing instrument that makes regular pay-
ments, called coupons, at contractually specified times t1 < t2 < . . . < tn =
T, and a final payment of the principal or face value at maturity date T. For
most coupon bonds, the coupons are all the same amount c per dollar of
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F IGURE 4.6 Spot, Forward, and Discount Curves
Three equivalent representations of the yield curve, as spot, forward, and
discount curves, USD swaps, Nov. 1, 2007, maturities in years.
Upper panel: Continuously compounded spot curve and corresponding
instantaneous forward curve, interest rates in percent. The dots represent the
U.S. dollar swap par rate prevailing on Nov. 3, 2007.
Lower panel: Discount curve, expressed as dollars per dollar of face value or as
a decimal fraction of face value.

face value, and the payment intervals are all equal: ti+1 − ti = ti − ti−1 = h,

i = 1, 2, . . . , n − 1. We’ll denote by pτ,h(c) the price at time t of a bond
maturing at time T, with an annual coupon rate c, paid 1

h times annually.
For a newly issued bond, the first coupon payment is h years in the

future, so t1 = t + h and T = nh. For example, a 10-year bond with semian-
nual coupons has n = 10

1
2

= 10 · 2 = 20 coupon payments. Not only the time
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to maturity of the bond, but also the coupon and the frequency of coupon
payments affect the bond’s value.

A coupon bond can be viewed as a package of discount bonds, with
each coupon payment and the principal payment at maturity is viewed as a
discount bond. This lets us relate coupon bond prices to the continuously
compounded spot curve:

� The i -th coupon payment is equivalent to an i × h-year discount bond
with a face value of c. If it were traded separately, its price would be
c × e−rihih.

� The principal payment is equivalent to a T-year discount bond with
a face value of $1. If it were traded separately, its price would
be e−rτ τ .

The value of the coupon bond is the arithmetic sum of these values. This
identity can be expressed in terms of spot rates:

pτ,h(c) = ch

τ
h∑

i=1

e−rihih + e−rτ τ

The continuously compounded yield to maturity of a coupon bond yτ (c)
is defined by

pτ,h(c) = ch

τ
h∑

i=1

e−yτ (c)ih + e−yτ (c)τ (4.5)

The yield can be interpreted as the constant (over maturities) spot rate that
is consistent with the value of the bond. There is a one-to-one relationship
between the price and the yield of a coupon bond, given a specific coupon,
maturity, and payment frequency. Given a price, the formula can be solved
for yτ (c) using numerical techniques. We can therefore express the bond
price as p(yt), expressed as a percent of par (or dollars per $100 of notional
value), with specific parameters τ , h, and c.

A par bond is a bond trading at its face value $1. For a par bond, the
yield to maturity is equal to the coupon rate.

Example 4.2 Let’s price a 10-year coupon bond using the yield curve
represented in Figure 4.6. We assume the bond has annual payments (h = 1)
of 5 percent (c = 0.05). The spot rates and discount factors are:
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Maturity Spot rate rt Discount factor Coupon PV

1 4.4574 0.95640 0.04782
2 4.3702 0.91631 0.04582
3 4.4083 0.87612 0.04381
4 4.4967 0.83538 0.04177
5 4.5989 0.79458 0.03973
6 4.6983 0.75435 0.03772
7 4.7881 0.71522 0.03576
8 4.8666 0.67751 0.03388
9 4.9342 0.64142 0.03207

10 4.9919 0.60702 0.03035

The last column displays the present value of the coupon payment for
each maturity, expressed in dollars per $1 of face value. The sum of these
present values is 0.388716. Including the present value of the principal at
maturity, we have

pτ,h(c) = 0.05
10∑

t=1

e−rtt + e−rτ τ

= 0.388716 + 0.60702

= 0.995737

per $1 of face value, or 99.5737 par value. The bond’s yield to maturity is
4.9317 per annum.

A simple example of a coupon bond curve is the swap curve. For
U.S. dollar–denominated swaps, the compounding convention is semian-
nual, while for most other currencies it is annual. For a flat swap curve,
that is, a swap curve on which swap rates for any maturity are equal to a
constant, there is a simple formula for the spot rate:

rt = h log(r s) ∀t > 0

where r s is the swap rate. For example, with a flat semiannual swap curve
of 3.5 percent, the spot rate is a constant 3.470 percent.



P1: a/b P2: c/d QC: e/f T1: g

JWBT440-c04 JWBT440-Malz August 17, 2011 16:47 Printer: To Come

148 FINANCIAL RISK MANAGEMENT

4.3 VAR FOR DEFAULT-FREE F IXED INCOME
SECURIT IES USING THE DURATION AND
CONVEXITY MAPPING

We have now seen that a fixed-income security can be decomposed into
a set of cash flows occurring on specific dates in the future and that its
value can be computed as the value of that set of discount bonds. We can
therefore measure the VaR and other distributional properties of a fixed-
income security using the distributions of its constituent discount bonds;
the return distribution of the bond is the return distribution of the portfolio
of zeroes. The security is treated as a portfolio consisting of the discount
bonds. To carry out this cash-flow mapping approach to computing VaR,
we require time series of returns on all the discount bonds involved. From
these time series, we can compute the volatilities and correlations needed
for the parametric and Monte Carlo approaches, and the historical security
returns needed to carry out the historical simulation approach.

This section lays out a simpler approach to measuring VaR for a bond
using the duration-convexity approximation. It is a specific application of the
delta-gamma approach to VaR measurement. The single risk factor in this
case is the yield to maturity of the bond. It is straightforward to apply delta-
gamma to coupon bonds, since bond values are monotonically decreasing
functions of yield.

We will treat the price of the bond as a function of its time-t yield
to maturity yt. In the notation of this chapter, p(yt) plays the role of the
general function f (St, τ ), but we will ignore explicit dependence on the time
to maturity other than through the yield. For fixed-income securities with
very short times to maturities, this would introduce a material bias, but
“roll-down” can be ignored for most bonds. We assume that p(yt) can be
differentiated twice with respect to yt.

By reducing the number of factors that influence bond prices to a single
yield rather than an entire term structure of interest rates, this approach
implicitly assumes that any change in bond value is caused by a parallel
shift in the yield curve. This approach thus ignores the impact of changes
in the shape of the yield curve to which the yield to maturity is invariant. A
curve steepening or flattening that leaves the level of yield unchanged may
impact the value of the bond, so this duration-convexity approximation can
understate risk.

In order for us to use the yield as a risk factor, we need an additional
ideal condition, namely, the existence of a liquid market in which freshly
issued bonds of precisely the same maturity trade daily. This condition is
not always met for the plain-vanilla swap market as well as the government
bond market, as we see in Chapters 12 and 14.
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With all these caveats, the duration-convexity approach is a reasonably
accurate approximation for most bonds. It is also relatively easy to compute,
and it is intuitive for fixed-income traders. For these reasons, it has become
quite standard.

4.3.1 Durat ion

We start by defining two related concepts, the DV01 and modified duration
of a bond. The DV01 is the change in value that results from a one basis
point (0.0001) change in yield. It is multiplied by −1 for the convenience of
working with a positive number:

DV01 ≡ −dyt
dp
dyt

= −0.0001
dp
dyt

The concept of DV01 applies to any interest-rate sensitive security,
including options. It can be defined to encompass changes in any yield curve
concept, such as spot or forward rates, as long as the change is a parallel
shift, that is, a uniform 1bp shift of the entire curve. We can get the DV01 of
the position by multiplying the quantity we just defined by the par amount
of the security.

In many textbooks on fixed income, DV01 and duration are calculated
by algebraically differentiating Equation 4.5, which defines the relationship
between bond price and yield with respect to the yield. Nowadays, it is
generally easier to use numerical approaches. The DV01 of a bond can be
easily and accurately calculated as the difference in the value of the coupon
bond with the entire yield curve shifted up and down, in parallel, by 0.5bp:

DV01 ≈ �p = −0.0001
p(yt + 0.00005) − p(yt − 0.00005)

0.0001
= p(yt − 0.00005) − p(yt + 0.00005)

where �p has been specified as the change for a 1bp change in yield.
The modified duration of a bond is defined as

mdurt ≡ − 1
p

dp
dyt

= 1
p

1
dyt

DV01 (4.6)

DV01 is expressed in dollars per $100, that is, dollars per par value of the
bond, per 1bp of yield change, while modified duration is a proportional
measure, specifically, the percent change in the bond’s value for a 1 percent
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(100 basis point) change in yield. Like DV01, modified duration is usually
computed numerically:

mdurt ≈ − 1
p

�p
�yt

= 1
p

DV01
0.0001

Example 4.3 (DV01 and Duration) We illustrate the duration and con-
vexity approach by continuing Example 4.2 of a default-free plain vanilla
10-year “bullet” bond paying an annual coupon 5 percent and priced using
the yield curve displayed in Figure 4.6. To make notation a bit easier and
avoid lots of zeroes, we’ll express bond par values as $100.

The DV01 is $0.080466 per $100 of notional value:

DV01 = −0.0001
99.5335175−99.6139834

0.0001
= 99.6139834−99.5335175

= 0.080466

The modified duration of the bond in our example is 8.08104. So if the
interest rate falls by 1 percentage point, the value of the bond will rise by
approximately 8.08 percent. If the interest rate falls by 1 basis point, the
value of the bond will rise by approximately 0.0808 percent. A $1,000,000
notional value position in the bond will decline by $804.66 per basis point:
At a price of 99.5737, the position value is $995,737, relative to which the
decline in value is $804.66.

4.3.2 Interest-Rate Volat i l i ty and Bond Price
Volat i l i ty

To compute the VaR, we assume we have a trusted estimate σ̂t of the volatil-
ity of daily changes in the bond yield. This is called a yield or basis point
volatility, as opposed to return or price volatility.

There are two generally accepted ways to compute interest-rate
volatility:

Yield volatility. In this definition, we treat the yield as though it
were a price and state the volatility as the standard deviation of
proportional changes in the yield. For example, if the yield level
is 5 percent and the yield volatility is 15 percent, then the annual-
ized standard deviation of yield changes is 0.15 × 0.05 = 0.0075 or
75 basis points.
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Yield volatility, like return volatility, can be historical, based on
historically observed yields, or implied, based on fixed-income op-
tion prices. When discussing implied rather than historical volatility,
yield volatility is often called Black volatility. Prices of OTC interest
rate options such as swaptions, are typically quoted as Black vols,
although there are readily available screens on Reuters and other
market information providers that translate the entire grid of op-
tion and underlying swap maturities and maturities into basis point
volatilities as well as dollar prices per option unit.

In expressing these interest-rate option prices, the yield is treated
as lognormally distributed. As in the case of other option implied
volatilities, this is not so much an authentic modeling assumption as
a pricing convention that can be translated into currency unit prices
via the Black-Scholes formulas. The empirical underpinning for the
lognormality assumption is even weaker than for asset prices. How-
ever, it does, at least, prevent negative interest rates from appearing.

Basis-point volatility. In this definition of volatility, we state the
volatility of changes in the yield itself, equal to ytσy. In the example
we just gave, the basis-point volatility corresponding to a yield level
of 5 percent and an annual yield volatility of 15 percent is 75 basis
points per annum. It is, however, generally not expressed in annual
terms, but rather at a daily rate, using the square-root-of-time rule.
With a day count of 252 days per year, we have a daily basis-point
volatility of 4.72 basis points.

The same choice of definitions applies to the computation of any across-the-
curve interest-rate volatility.

The relationship between bond price volatility σp and yield volatility σy

is derived from the definition of modified duration, which we can rewrite as

dp
p(yt)

= − mdurt dyt

As can be seen in Figure 4.7, the relationship is nearly linear. When
volatility is defined as yield volatility, the change in yield, measured in
interest-rate units such as basis points, is dyt = σyyt, so

σp = mdurt ytσy

This expression for bond price volatility will be used in the VaR computation
examples that follow.
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bond price volatility for σ y 0.15
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F IGURE 4.7 Bond Price and Yield Volatility
Bond price volatility is a linear function of yield volatility for a given term
structure. Volatilities are expressed as decimals at an annual rate.

Example 4.4 (Yield and Bond Price Volatility) Continuing Example 4.3 of
a default-free plain vanilla 10-year “bullet” bond paying an annual coupon
of 5 percent, let the Black (yield) volatility equal 15 percent. The price
volatility is then

σp = mdurt ytσy = 8.08104 × 0.04932 × 0.15 = 0.0598

or 5.98 percent.

4.3.3 Durat ion-Only VaR

We’ll begin by calculating VaR for the bond position using duration only.
This is essentially a delta approximation. For many purposes, using duration
only is accurate enough.

Given an estimate of the yield volatility, whether based on historical
data or an implied volatility, we can say that, with confidence level α, the
change in yield over the period t to t + τ will be less than

(
ez∗σy

√
τ − 1

)
yt

with a probability of α, where z∗ is the ordinate of the standard normal
distribution at which �(z) = α.
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A VaR estimate for a long position of x units of the bond is then

VaRt (α, τ ) = x
(
ez∗σy

√
τ − 1

)
yt × mdurt ×p(yt)

where x is the par value of the bonds. The VaR is thus equal to the size
of the position times the absolute value of the decline in price in the VaR
scenario. This can be equivalently expressed as

VaRt (α, τ ) = x
(
ez∗σy

√
τ − 1

)
yt × DV01

This is a simpler expression, but isn’t typically encountered because modified
duration is the more common metric for expressing bond price sensitivity.

Note that we take the ordinate of α rather than 1 − α. Why? In the
terminology of the delta-gamma approach, we identify

dp
dyt

= δt = −p mdurt

as the delta of the bond. Since δt < 0, we have used the right-tail rather than
the left-tail ordinate of the standard normal distribution. This corresponds
to the fact that the bond loses value when the yield rises.

Example 4.5 (Duration-Only VaR) In our standing example, the market
parameters for the estimate are

Initial notional value $1,000,000
Initial market value $995,737
Initial yield 4.9317%
mdur 8.08104 bp per bp of yield
Yield vol σy 15% p.a. (0.945% per day)

The VaR parameters are

Time horizon 1 day
Confidence level 99%
z∗ 2.33
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The duration-only VaR is then:

VaRt (α, τ ) = x
(
ez∗σy

√
τ − 1

)
yt mdurt p(yt)

= 106 × (e0.02198 − 1) × 0.04932 × 8.081 × 0.995737

= 106 × 0.022253 × 0.396835

= 8819.78

4.3.4 Convexity

We can make the VaR estimate somewhat more precise by approximating
the bond’s nonlinear exposure to yield. To do this, we measure the bond’s
convexity, the second derivative of its value with respect to the yield, nor-
malized by the price:

convt ≡ 1
p(yt)

d2 p

dy2
t

Like DV01 and duration, convexity can be computed for all interest-rate
sensitive securities and using across-the-curve interest-rate concepts other
than yield to maturity.

Convexity is always positive for plain-vanilla bonds, but it can be nega-
tive for some structured products. Mortgage-backed securities are an impor-
tant example of bonds with negative convexity. We will see some structured
credit examples in Chapters 9 and 11, and an example of the difficulty of
managing negative convexity in Chapter 14.

The convexity of a bond, like the DV01, can be computed numerically
by shifting the yield curve up and down, in parallel, by 0.5 bp, twice. We
have

�2 p ≡ �[�(p)] = �[p(yt + 0.00005) − p(yt − 0.00005)]

= p(yt + 0.0001) − p(yt) − [p(yt) − p(yt − 0.0001)]

= p(yt + 0.0001) + p(yt − 0.0001) − 2p(yt)

This computation is identical to measuring the bond’s DV01 for yields that
are 0.5 basis points higher and lower than the current yield, and taking their
difference.

Convexity is then measured as

convt ≈ 1
p

�2 p

�y2
t

= 1
0.00012 p

[p(yt + 0.0001) + p(yt − 0.0001) − 2p(yt)]



P1: a/b P2: c/d QC: e/f T1: g

JWBT440-c04 JWBT440-Malz August 17, 2011 16:47 Printer: To Come

Nonlinear Risks and the Treatment of Bonds and Options 155
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F IGURE 4.8 Approximating the Bond Price-Yield Relationship
Using duration alone provides a linear approximation to the sensitivity of the
bond price to changes in yield. For small changes in yield, this is fairly close.
Using convexity provides a linear-quadratic approximation. It’s an
improvement, but still not quite exact.

Example 4.6 (Convexity) Continuing Example 4.5, the duration and con-
vexity approximation is illustrated in Figure 4.8. The convexity of the bond
is 74.2164. We can compute this result as follows. The DV01 measure at
a yield 0.5 basis points lower (higher) than the current yield is 0.0805029
(0.0804290). The difference between these DV01s is 0.0000739. Dividing
this result by 0.00012 × p gives the result for convexity.

There is an alternative convention for expressing duration. It is in fact
more widely used than the one presented here, appearing for example on
Bloomberg bond analysis screens and in the published research of most
banks and brokerages; the textbooks are mixed. This alternative convention
doesn’t affect duration, but does make a difference for convexity. It ex-
presses the yield as a decimal (1bp ≡ 0.0001) in the pricing formula (there
is no alternative), but as a percent in the denominator, so 1bp ≡ 0.01. The
DV01 or �p or �2 p we just defined is multiplied by 100. In the alternative
convention, modified duration is the same, but convexity is expressed in
units one-hundredth the size of those here.

4.3.5 VaR Using Durat ion and Convexity

We can now apply the full delta-gamma approach to compute VaR for a
bond. The gamma is represented by convexity:

d2 p

dy2
t

= γ = p convt
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With duration and convexity, we have a linear-quadratic or second-
order approximation to the bond’s value:

�p ≈ − mdurt �yt + 1
2

convt(�yt)2

The convexity term increases the gain from a decline in yield and reduces
the loss from a rise in yield. The VaR estimate for the bond is now

VaRt (α, τ ) = x
(
ez∗σy

√
τ − 1

)
yt pmdurt −1

2
x

[(
ez∗σy

√
τ − 1

)
yt

]2
p convt

Example 4.7 (VaR for a Default-Free Plain-Vanilla Coupon Bond) The
additional parameter, compared to the previous example of duration-only
VaR, is

convt 74.2164bp per squared bp of yield

The convexity adjustment, which attenuates the loss in the VaR scenario
and is therefore subtracted from the linear loss term, is:

x
1
2

[(
ez∗σy

√
τ − 1

)
yt

]2
convt p(yt)

= 106 × 1
2

(0.022253 × 0.04932)2 × 74.2164 × 0.995737

= 106 × 1
2

× 1.20141 × 10−6 × 74.2164 × 0.995737

= 44.39

The VaR is thus

VaRt

(
0.99,

1
252

)
= 8, 819.78 − 44.39 = 8, 775.39

FURTHER READING

Taleb (1997) and Hull (2000) are textbook introductions to option modeling
and risk management. Allen (2003) is a general risk management textbook
with a strong focus on derivatives. See Rubinstein (1994) on derivatives and
nonlinear risk.
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VaR for nonlinear portfolios is discussed by Britten-Jones and Schae-
fer (1999). Alternative ways of carrying our delta-gamma are explored in
Mina and Ulmer (1999), and methods for speeding up simulations when
repricing are discussed in Mina (2000).

Tuckman (2002) is a textbook covering fixed-income modeling.
Shiller and McCulloch (1990) provides a compact but accessible introduc-
tion to term-structure concepts. The yield-curve fitting technique employed
in this chapter was originally developed by Nelson and Siegel (1987). The in-
terpretation of the Nelson-Siegel approach as a factor model is presented in
Diebold and Li (2006). See Chance and Jordan (1996) on the duration-
convexity approach. Cash flow mapping alternatives to duration-convexity
VaR are discussed in Mina (1999).


